Vol. 10 No. 3 (2024): MOLIYA VA BANK ISHI
Issue Articles

Composite indicators of business activity surveys for nowcasting economic growth

Murad Raxmanov
Markaziy bank

Published 2024-08-13

Keywords

  • business activity surveys,
  • economic sentiment index,
  • business climate index,
  • vector autoregression,
  • dummy variables

How to Cite

Raxmanov, M. (2024). Composite indicators of business activity surveys for nowcasting economic growth. FINANCE AND BANKING, 10(3), 67–74. Retrieved from https://journal.bfa.uz/index.php/bfaj/article/view/245

Abstract

The paper evaluates the efficiency of using aggregated results of business activity surveys for nowcasting and short-term forecasting of GDP growth, and compares the forecasting capabilities of various composite indicators based on such surveys. The empirical basis of the study is the results of business activity and consumer expectations surveys of Rosstat, as well as the monitoring of enterprises of the Bank of Russia, aggregated into indices of economic sentiment and business climate, respectively. A close correlation between the dynamics of each composite indicator and the index of physical volume of GDP, as well as the presence of Granger causality between them, is revealed. Three versions of the vector autoregressive model with dummy variables are constructed. According to the obtained parameters of the quality of intra-sample forecasts, the smallest errors are given by the specification including a combination of composite indicators.

References

  1. UN. Handbook on Economic Tendency Survey. New York: UN, 2015. 145 p.
  2. European Commission. The Joint Harmonised EU Programme of Business and Consumer Surveys. User Guide (Updated January 2024). https://economy-finance.ec.europa.eu/document/download/4f162b92-e654-4cef-beed-38960dae1b09_en?filename=bcs_user_guide.pdf.
  3. Kitrar L., Lipkind T. The relationship of economic sentiment and GDP growth in Russia in light of the Covid-19 crisis // Entrepreneurial Business and Economics Review. 2021. Vol. 9(1). P. 7–29. doi: https://doi.org/10.15678/EBER.2021.090101.
  4. Китрар Л., Липкинд Т. Анализ взаимосвязи индикатора экономических настроений и роста ВВП. Экономическая политика. 2020. T. 16. № 6. С. 8–41. doi: https://doi.org/10.18288/1994-5124-2020-6-8-41.
  5. OECD. OECD System of Composite Leading Indicators. 2012. https://www.oecd.org/sdd/41629509.pdf.
  6. Mourougane A., Roma M. Can Confidence Indicators Be Useful to Predict Short Term Real GDP Growth? // Applied Economics Letters (2003). Vol. 10. No 8. P. 519–522.
  7. McNabb R., Taylor K. Business Cycles and the Role of Confidence: Evidence for Europe // Oxford Bulletin of Economics and Statistics (2007); Vol. 69. No 2. P. 185–208.
  8. Christiansen C., Eriksen J.N., Moller S.V. Forecasting US Recessions: The Role of Sentiment // Journal of Banking and Finance. 2014. 49: 459–468. doi: https://doi.org/10.1016/j.jbankfin.2014.06.017.
  9. Bondt G. J., Schiaffi S. Confidence Matters for Current Economic Growth: Empirical Evidence for the Euro Area and the United States // Social Science Quarterly. 2015. Vol. 96. No 4. P. 1027–1040. doi: https://doi.org/10.1111/ssqu.12181.
  10. Claveria O., Pons E., Ramos R. Business and Consumer Expectations and Macroeconomic Forecasts // International Journal of Forecasting. 2007. 23(1):47-69. doi: https://doi.org/10.1016/j.ijforecast.2006.04.004.
  11. Cesaroni T. The cyclical behavior of the Italian business survey data // Empirical Economics. 2011. 41: 747–768. doi: https://doi.org/10.1007/s00181-010-0390-7.
  12. Banbura M., Runstler G. A look into the factor model black box – publication lags and the role of hard and soft data in forecasting GDP // ECB Working Paper. 2007. No 751. Frankfurt am Main: ECB. https://ssrn.com/abstract=984265.
  13. Angelini E., Camba-Méndez G. Giannone D., Rünstler G., Reichlin L. Short-term forecast of euro area GDP growth // ECB Working Paper. 2008. No 949. Frankfurt am Main: ECB. https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp949.pdf.
  14. Girardi A. Expectations and macroeconomic fluctuations in the euro area // Economics Letters. 2014. Vol. 125(2). P. 315-318. doi: https://doi.org/10.1016/j.econlet.2014.09.031.
  15. Gayer C., Girardi A., Reuter A. The Role of Survey Data in Nowcasting Euro Area GDP Growth // European Commission Economic Papers. 2014. No 538. https://ec.europa.eu/economy_finance/publications/economic_paper/2014/pdf/ecp538_en.pdf.
  16. Basselier R., de Antonio Liedo D., Langenus G. Nowcasting Real Economic Activity in the Euro Area: Assessing the Impact of Qualitative Surveys // Working Paper Research. 2017. No. 331. Brussels: National Bank of Belgium.
  17. Bruno, G., Lupi, C. Forecasting industrial production and the early detection of turning points // Empirical Economics. 2004. Vol. 29. P. 647–671. doi: https://doi.org/10.1007/s00181-004-0203-y.
  18. Mattos D., Sequeira A.N., Lobão W., Costa Ferreira P. Forecasting Brazilian Industrial Production with the VAR Model and SARIMA with Smart Dummy. Pres. at the 33rd CIRET Сonference «Economic Tendency Surveys and Economic Policy». 2016. Copenhagen.
  19. Медведев И. Сравнение эффективности режимов чистого и гибридного инфляционного таргетирования с точки зрения контроля над инфляцией // Проблемы прогнозирования (2023); № 2, стр. 169-182. https://doi.org/10.47711/0868-6351-197-169-182.
  20. Арефьев Н. Частичная идентификация монетарного правила на основе лаговых ограничений // Экономический журнал ВШЭ (2016); Т. 20. № 3. С. 500–512.
  21. Крепцев Д., Селезнев С. Влияние ставок денежного рынка на ставки по кредитам конечным заемщикам. Банк России // Серия докладов об экономических исследованиях (2016). URL: https://cbr.ru/Content/Document/File/16731/wps_9.pdf.
  22. Орлов К. Построение большой байесовской векторной авторегрессионной модели для Казахстана. Департамент денежно-кредитной политики Банка Казахстана. Экономическое исследование (2021); №2021-1. https://www.nationalbank.kz/file/download/65031.
  23. Безбородова А. SVAR: анализ и прогнозирование основных макроэкономических показателей // Национальный Банк Республики Беларусь. Исследования Банка №11. 2017.
  24. Китрар Л., Липкинд Т., Усов Н. Прогнозирование роста ВВП с учетом кризисных шоков на основе результатов обследований деловой активности. Вопросы статистики. 2021. Т. 28 № 4. С. 80-95. doi: https://doi.org/10.34023/2313-6383-2021-28-4-00-00.
  25. Кобзев А., Андреев А. Индикаторы деловой активности и инфляции на основе мониторинга предприятий. Аналитическая записка ЦБ РФ. 2021. https://cbr.ru/Content/Document/File/119543/analytic_note_20210322.pdf.
  26. Банк России. Мониторинг нефинансовых предприятий: методология Банка России. 2022. https://cbr.ru/Content/Document/File/130872/mm_br.pdf.
  27. Банк России. Мониторинг предприятий для целей кредитно-денежной политики: мировой опыт. 2022. https://cbr.ru/Content/Document/File/131901/mp_we.pdf.
  28. Sims C. A. Macroeconomics and Reality // Econometrica. 1980. Vol. 48. P. 1–48.
  29. Lütkepohl H. Vector Autoregressive Models // Lovric M. (ed.) International Encyclopedia of Statistical Science. 2011. Berlin, Heidelberg: Springer.
  30. Banbura M., Giannone D., and Reichlin L. Large Bayesian vector auto regressions // Journal of applied Econometrics 25.1 (2010): 71-92.
  31. Gupta R., Jurgilas M., Kabundi A. The effect of monetary policy on real house price growth in South Africa: A factor-augmented vector autoregression (FAVAR) approach // Economic modelling. 2010. Vol. 27.1 P. 315-323. doi: https://doi.org/10.1016/j.econmod.2009.09.011.